Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Clin Infect Dis ; 76(8): 1391-1399, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2293570

ABSTRACT

BACKGROUND: Most studies of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) measure antibody or cellular responses in blood; however, the virus infects mucosal surfaces in the nose and conjunctivae and infectious virus is rarely if ever present in the blood. METHODS: We used luciferase immunoprecipitation assays to measure SARS-CoV-2 antibody levels in the plasma, nose, and saliva of infected persons and vaccine recipients. These assays measure antibody that can precipitate the SAR-CoV-2 spike and nucleocapsid proteins. RESULTS: Levels of plasma anti-spike antibody declined less rapidly than levels of anti-nucleocapsid antibody in infected persons. SARS-CoV-2 anti-spike antibody levels in the nose declined more rapidly than antibody levels in the blood after vaccination of infected persons. Vaccination of previously infected persons boosted anti-spike antibody in plasma more than in the nose or saliva. Nasal and saliva anti-spike antibody levels were significantly correlated with plasma antibody in infected persons who had not been vaccinated and after vaccination of uninfected persons. CONCLUSIONS: Persistently elevated SARS-CoV-2 antibody in plasma may not indicate persistence of antibody at mucosal sites such as the nose. The strong correlation of SARS-CoV-2 antibody in the nose and saliva with that in the blood suggests that mucosal antibodies are derived primarily from transudation from the blood rather than local production. While SARS-CoV-2 vaccine given peripherally boosted mucosal immune responses in infected persons, the increase in antibody titers was higher in plasma than at mucosal sites. Taken together, these observations indicate the need for development of mucosal vaccines to induce potent immune responses at sites where SARS-CoV-2 infection occurs. CLINICAL TRIALS REGISTRATION: NCT01306084.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination
2.
Blood ; 137(2): 185-189, 2021 01 14.
Article in English | MEDLINE | ID: covidwho-953565

ABSTRACT

Vaccinations are effective in preventing infections; however, it is unknown if patients with chronic lymphocytic leukemia (CLL) who are treatment naïve (TN) or receiving Bruton tyrosine kinase inhibitors (BTKi's) respond to novel adjuvanted vaccines. Understanding the effect of BTKi's on humoral immunity is timely because BTKi's are widely used and vaccination against coronavirus disease 2019 is urgently needed. In 2 open-label, single-arm clinical trials, we measured the effect of BTKi's on de novo immune response against recombinant hepatitis B vaccine (HepB-CpG) and recall response against recombinant zoster vaccine (RZV) in CLL patients who were TN or on BTKi. The primary end point was serologic response to HepB-CpG (anti-hepatitis B surface antibodies ≥10 mIU/mL) and RZV (≥fourfold increase in anti-glycoprotein E). The response rate to HepB-CpG was lower in patients on BTKi (3.8%; 95% confidence interval [CI], 0.7-18.9) than patients who were TN (28.1%; 95% CI, 15.6-45.4; P = .017). In contrast, the response rate to RZV did not differ significantly between the BTKi (41.5%; 95% CI, 27.8-56.6) and TN cohorts (59.1%; 95% CI, 38.7-76.7; P = .2). BTKi's were associated with a decreased de novo immune response following HepB-CpG, whereas recall immune response following RZV was not significantly affected by BTKi therapy. These trials were registered at www.clinicaltrials.gov as #NCT03685708 (Hep-CpG) and #NCT03702231 (RZV).


Subject(s)
Hepatitis B Vaccines/immunology , Herpes Zoster Vaccine/immunology , Immunity , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Protein Kinase Inhibitors/adverse effects , Vaccines, Synthetic/immunology , Adjuvants, Immunologic , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Aged , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Male , Middle Aged , Patient Outcome Assessment , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL